Amplificateur opérationnel

Un amplificateur opérationnel est un amplificateur différentiel : c'est un amplificateur électronique qui augmente une différence de potentiel électrique présente à ses entrées.



Catégories :

Amplificateur électronique - Composant actif - Composant électronique

Page(s) en rapport avec ce sujet :

  • On notera que l'amplificateur opérationnel est un composant actif et qu'il... On remarque que la tension de sortie est inversée comparé à l'entrée.... Les montages à base d'amplificateurs opérationnels Commande simple de relais... (source : electronique-radioamateur)
  • Un amplificateur opérationnel est un CI (Circuit Intégré) à multiples fonctions. A titre d'exemple, les ampli -ops peuvent être configurés pour être un... La tension d'entrée sera augmentée selon le rapport du diviseur de tension à la sortie :... (source : planete-sciences)
  • L'amplificateur opérationnel est un composant clé, universel, ... Un exemple pratique : le suiveur de tension. On raccorde tout simplement la sortie de l'ampli... Ayant la même chose aux deux entrées, l'ampli op ne touche plus à rien, ... (source : 4p8)
Des amplificateurs opérationnels.
La représentation électrique d'un amplificateur opérationnel fluctue suivant les pays.

Un amplificateur opérationnel (aussi dénommé ampli-op ou ampli op, AO, AOP[1], ALI[2] ou AIL[3]) est un amplificateur différentiel : c'est un amplificateur électronique qui augmente une différence de potentiel électrique présente à ses entrées. Il a été originellement conçu pour effectuer des opérations mathématiques dans les calculateurs analogiques : il permettait de modéliser les opérations mathématiques de base comme l'addition, la soustraction, l'intégration, la dérivation et d'autres. Par la suite, l'amplificateur opérationnel est utilisé dans bien d'autres applications comme la commande de moteurs, la régulation de tension, les sources de courants ou encore les oscillateurs[4], [5], [6], [7].

Physiquement, un amplificateur opérationnel est constitué de transistors, de tubes électroniques ou de n'importe quels autres composants amplificateurs. On le trouve couramment sous la forme de circuit intégré.

Le gain en tension particulièrement important d'un amplificateur opérationnel en boucle ouverte fait de lui un composant utilisé dans une grande variété d'applications. Certains amplificateurs opérationnels, de par leurs caractéristiques (temps de montée, faible distorsion harmonique, etc. ), sont spécialisés dans l'augmentcation de certains types de signaux comme les signaux audio ou vidéo.

Historique

Le calculateur analogique ELWAT.

On doit le terme d'amplificateur opérationnel (Operational Augmenter en anglais) à John R. Ragazzini en 1947[8], [9]. Les amplificateurs opérationnels ont été originellement développés à l'ère des tubes électroniques, ils étaient alors utilisés dans les calculateurs analogiques. Aujourd'hui, les amplificateurs opérationnels sont disponibles sous forme de circuits intégrés, quoique des versions sous forme de composants discrets soient utilisées pour des applications spécifiques.

AO à tubes K2-W.

Le premier AOP disponible en grande série fut le K2-W de la société GAP/R[10] en janvier 1953[11], [12]. À l'époque, le K2-W était vendu pour une vingtaine de dollars US[11]. Le premier AO intégré disponible en grande quantité, à la fin des années 1960, fut l'AOP bipolaire Fairchild μA709, créé par Bob Widlar en 1965. En 1968, le μA709 remplacé par le μA741 qui offrait de meilleures performances tout en étant plus stable et plus simple à mettre en œuvre[13], [14]. Quoiqu'offrant des performances identiques à celles de son principal concurrent le LM101 de National Semiconductor, le μA741 est devenu un standard car il disposait en interne d'une capacité de compensation rendant ainsi le μA741 plus simple à utiliser que le LM101[14]. Le prix des AOP a énormément évolué à ses débuts durant les années 1960 : en 1963, le prédécesseur du μA709, le μA702, vaut entre 150 et 350 (dollars américains)  ; en 1965, le µA709 est mis en vente à 70 l'unité, mais son prix baisse vite pour atteindre 5 en 1967 ; en 1969, le prix moyen d'un AOP était de 2 [15]. Ainsi, en six ans, le prix des AOP a été divisé par plus de cent tandis qu'ils sont de plus en plus performants, robustes et simples d'utilisation.

Un µA741 en boîtier TO5.

Le μA741 est toujours fabriqué aujourd'hui et il est devenu omniprésent en électronique. Plusieurs fabricants produisent une version perfectionnée de cet AOP, reconnaissable grâce au «741» présent dans leur appellation. Depuis, des circuits plus performants ont été développés, certains basés sur des JFET (fin des années 1970), ou sur des MOSFET (début des années 1980). La majorité de ces AOP modernes peuvent se substituer à un μA741, dans un circuit de conception ancienne, afin d'en perfectionner les performances.

Les amplificateurs opérationnels sont disponibles sous des formats, brochages, et niveaux de tensions d'alimentation standardisés. Avec quelques composants externes, ils peuvent réaliser une grande variété de fonctionnalités utiles en traitement du signal. La majorité des AOP standard ne coûtent que quelques dizaines de centimes d'euro, mais un AOP discret ou intégré avec des caractéristiques non-standard et de faible volume de production peut coûter plus de 100 euros pièce.

Les principaux fabricants d'amplificateurs opérationnels sont : Analog Devices, Linear Technology, Maxim, National Semiconductor, STMicrœlectronics et Texas Instruments[16].

Brochage

Brochage théorique d'un AOP

Un AOP dispose typiquement de deux entrées, deux broches d'alimentation et une sortie. L'entrée notée e+ est dite non-inverseuse alors que l'entrée e- est dite inverseuse, ceci à cause de leur rôle respectif dans les relations entrée/sortie de l'amplificateur. La différence de potentiel entre ces deux entrées est nommée tension différentielle d'entrée.

La broche d'alimentation positive repérée VCC + est quelquefois aussi nommée VDD, VCC, ou VS+. La broche d'alimentation négative repérée VCC − est quelquefois aussi nommée VSS, VEE, ou VS−. Le caractère doublé qui se trouve en indice de la lettre V fait référence au nom de la broche du transistor à laquelle cette alimentation sera le plus souvent reliée[17]. Ainsi, les appellations VCC et VEE sont le plus souvent réservées aux AOP bipolaires (C pour Collecteur et E pour Émetteur) alors que les appellations VDD et VSS sont le plus souvent réservées aux AOP à effet de champ (D pour Drain et S pour Source).

Suivant les applications, l'AOP peut aussi être pourvu de deux broches pour la compensation d'offset mais aussi d'une broche pour le réglage de la compensation fréquentielle.

Il existe des AOP possédant une sortie différentielle. De tels amplificateurs possèdent deux broches de sorties mais aussi quatre broches d'alimentation pour pouvoir réaliser une isolation galvanique entre l'entrée et la sortie. Ces amplificateurs sont aussi nommés «amplificateurs d'isolement».

Amplificateur opérationnel parfait

Caractéristique entrée sortie d'un amplificateur opérationnel parfait

La notion d'amplificateur opérationnel parfait ou parfait sert à raisonner sur le fonctionnement théorique de l'amplificateur opérationnel en s'affranchissant des phénomènes parasites et des limitations inhérents à la réalité technologique des composants. Les progrès réalisés depuis les premiers AOP tendent, par le perfectionnement constante des performances, à se rapprocher du modèle de l'AOP parfait.

L'amplificateur opérationnel parfait possède une impédance d'entrée, un gain en mode différentiel, une vitesse de balayage et une bande passante illimités tandis que son gain de mode commun et sa résistance de sortie sont nuls. Qui plus est , il n'a pas de tension d'offset ni de courant de polarisation[18], [19]. En réalité le gain différentiel d'un amplificateur opérationnel variant fortement selon la fréquence, il est courant de le considérer comme illimité pour simplifier les calculs[18]. Il est aussi envisageable de considérer le gain d'un amplificateur opérationnel comme étant celui d'un intégrateur pur[20] pour se rapprocher du comportement réel de l'amplificateur.

Ces caractéristiques traduisent le fait que l'amplificateur opérationnel parfait ne perturbe pas le signal qu'il va augmenter et que sa tension de sortie dépend seulement de la différence de tension entre ses deux entrées.

La présence d'un gain différentiel illimité implique que la moindre différence de potentiel entre les deux entrées de l'amplificateur l'amènera à saturer. Si on ne désire pas que la tension de sortie de l'amplificateur soit seulement limitée à ± Vsat suivant le signe de la différence de potentiel entre les deux entrées de l'amplificateur, l'utilisation d'une contre-réaction négative est obligatoire.

La contre-réaction sur l'entrée inverseuse (ou contre-réaction négative) d'un AOP sert à soustraire une partie du signal de sortie au signal d'entrée de l'amplificateur. Grâce à cette soustraction, la contre-réaction négative sert à garder une différence de potentiel nulle en entrée de l'amplificateur. On parle alors de mode linéaire car on peut faire fluctuer la tension de sortie entre + et - Vsat suivant la tension appliquée en entrée de l'amplificateur. L'absence de contre-réaction ou une contre-réaction sur l'entrée non-inverseuse (ou réaction positive) de l'AOP amènera l'amplificateur en saturation positive ou négative suivant le signal appliqué en entrée. On parle alors de mode comparateur (ou saturé).

Mode linéaire - Application à un amplificateur non-inverseur

Article détaillé : Circuits en mode linéaire.
Montage amplificateur non-inverseur

Pour cette étude, on considérera que l'amplificateur opérationnel utilisé est parfait, et qu'il fonctionne en «mode linéaire» car il utilise une contre-réaction sur l'entrée inverseuse de l'AOP. La contre-réaction sur l'entrée inverseuse permet d'effectuer une contre-réaction négative : toute augmentation de la tension de sortie va diminuer la tension différentielle d'entrée de l'AOP. Ainsi, la différence de tension entre les deux entrées de l'amplificateur est maintenue à zéro. Qui plus est , l'impédance d'entrée étant illimitée, aucun courant ne circule dans ces entrées. On retrouve par conséquent la tension Ve en sortie du pont diviseur de tension non chargé constitué par R2 et R1.

On obtient alors :

V_{e} = V_{s} \times {R_{1} \over {R_{1} + R_{2}}}

et donc :

V_\mathrm{s} = V_{e} \times { R_{1} + R_{2} \over { R_{1} } } = V_\mathrm{e} \left ( 1 + {R_2 \over R_1} \right)

Mode saturé - Application à un comparateur à deux seuils non-inverseur

Article détaillé : Circuits en mode non-linéaire.
Trigger de Schmitt non-inverseur

Pour cette étude, on considérera que l'amplificateur opérationnel utilisé est parfait, et qu'il fonctionne en «mode comparateur» car il utilise une contre-réaction sur l'entrée non-inverseuse de l'AOP. La contre-réaction sur l'entrée non-inverseuse permet d'effectuer une contre-réaction positive : toute augmentation de la tension de sortie va augmenter la tension différentielle d'entrée de l'AOP. Le gain différentiel de l'amplificateur étant illimité, la tension de sortie Vs ne peut valoir que +Vcc ou -Vcc suivant le signe de la tension différentielle Vdiff.

V_{diff}=V_{eˆ+}-V_{eˆ-}=V_{eˆ+}=V_e  \cdot \frac{R_2}{R_1+R_2} + V_s \cdot \frac{R_1}{R_1+R_2}

Courbe entrée sortie d'un trigger de Schmitt.

La tension Ve, annulant la tension différentielle Vdiff, vaut donc :

V_e =-V_s  \cdot \frac{R_1}{R_2}

Suivant le signe de Vs, on peut définir une tension de basculement positif VT+ faisant passer la sortie Vs de -Vcc à +Vcc, et une tension de basculement négatif VT- faisant passer Vs de +Vcc à -Vcc :

Tension de basculement positif :  V_\mathrm{Tˆ+} = V_\mathrm{cc} \left ( {R_1 \over R_2} \right)
Tension de basculement négatif :  V_\mathrm{Tˆ-} = - V_\mathrm{cc} \left ( {R_1 \over R_2} \right)
T pour threshold, signifiant seuil.

Amplificateur opérationnel réel

Amplificateur opérationnel LM741 en boîtier DIP 8

Bien que le modèle parfait de l'AOP permette de calculer la fonction de transfert et de comprendre la majorité des montages à base d'AOP, les AOP réels possèdent un certain nombre de limitations comparé à ce modèle.

L'AOP présente les défauts suivants : présence d'un offset en entrée, influence de la tension de mode commun (moyenne arithmétique des tensions des deux entrées) sur la tension de sortie, impédance non nulle en sortie, impédance non illimitée en entrée et variation du gain selon la fréquence. Qui plus est , la tension de sortie peut être influencée par des variations de tension d'alimentation et possède une vitesse de balayage finie.

Gain différentiel et de mode commun

Caractérisation réelle d'un AOP

Le gain différentiel Gdiff d'un AOP réel est fini et fluctue selon la fréquence. Pour un AOP compensé, la variation en fréquence du gain différentiel peut être assimilée à celle d'un dispositif passe-bas du premier ordre dont le produit gain-bande passante est constant[21] :

G_{diff}=\frac{G_0}{1+j\frac{f}{f_1}}

Avec G0 le gain continu et f1, la fréquence de coupure à 3 dB. Le gain G0 vaut le plus souvent entre 100 et 130 dB pour un AO de précision et entre 60 et 70 dB pour un AO rapide[19]. Pour les applications nécessitant une bande passante plus importante, il existe des AOP sous-compensés ou, plus rarement, non compensés. Pour ces amplificateurs, le constructeur précise le gain minimal pour lequel l'AOP reste inconditionnellement stable (pour plus d'informations, se référer au paragraphe compensation fréquentielle).

La tension de sortie d'un AOP ne dépend pas seulement de la différence de tension entre ces deux entrées, elle dépend aussi de la moyenne de ces deux entrées (ou tension de mode commun). La relation entrée sortie d'un AOP s'établit ainsi :

V_{s}=G_{diff}\times(V_{eˆ+} - V_{eˆ-})+G_{mc}\frac{V_{eˆ+} + V_{eˆ-}}{2}

Avec Gmc, le gain en mode commun. Pour définir la capacité de l'amplificateur à rejeter le mode commun, on définit le taux de réjection du mode commun (TRMC)  :

TRMC=\frac{G_{diff}}{G_{mc}}

Le TRMC en continu fluctue entre 70 et 130 dB suivant l'amplificateur[19], mais il diminue fortement avec l'augmentation de la fréquence et est aussi dépendant des tensions d'alimentation.

Impédances d'entrée et de sortie

Modélisation d'un AOP comprenant les impédances d'entrées et de sortie

L'impédance d'entrée d'un AO est due aux transistors d'entrées de ce dernier. L'entrée d'un AOP peut être modélisée par trois résistances : deux résistances de mode commun et une résistance différentielle. Les résistances de mode commun sont reliées entre une des deux entrées et le zéro alors que la résistance différentielle est disposée entre les deux entrées différentielles. Ces résistances ont des valeurs comprises entre 105 et 1012 Ω suivant la technologie des transistors utilisés[22].

De plus, il existe en parallèle de chacune de ces résistances un condensateur dont la valeur peut fluctuer de quelques pF à 25 pF[22]. Ces condensateurs font chuter l'impédance d'entrée de l'amplificateur à haute fréquence. L'utilisation d'une boucle de contre-réaction multiplie l'impédance d'entrée par le gain, cette boucle donnant la possibilité ainsi de diminuer l'effet de ces condensateurs sur le gain en haute fréquence. Les sources possédant aussi des capacités parasites faisant baisser leurs impédances en hautes fréquences[23], l'effet de l'impédance d'entrée d'un AOP, alimenté par une source de faible résistance, sur le dispositif peut le plus souvent être négligé[23], [24].

Pour les AOP utilisant une contre-réaction en courant, l'impédance de l'entrée non-inverseuse peut elle aussi être modélisée par une résistance comprise entre 105 et 109 Ω en parallèle avec un condensateur[22]. L'entrée inverseuse peut être modélisée, quant à elle , par une charge réactive (condensateur ou inductance suivant l'AOP) en série avec une résistance comprise entre 10 et 100 Ω[22], [25].

L'impédance de sortie, notée RS, d'un AOP n'est pas nulle. Elle vaut entre 50 Ω et 200 Ω[26]. Cette impédance de sortie se traduit pas une chute de la tension de sortie au fur et à mesure que le courant de charge augmente. Dans un montage utilisant une contre-réaction, l'impédance de sortie se trouve divisée par le gain de la boucle de contre-réaction ce qui sert à la ramener à une valeur proche du zéro parfait.

Tension de décalage et courants d'entrée

Conséquence de l'offset

Quand un amplificateur opérationnel ne reçoit aucun signal sur ses entrées (quand ses entrées sont l'ensemble des deux réunies à zéro), il subsiste le plus souvent une tension continue de décalage de la tension de sortie vis-à-vis de zéro. Ce décalage (ou offset) provient de deux phénomènes : la tension de décalage propre aux circuits internes de l'AOP d'une part, et l'influence des courants de polarisation[27] de la paire différentielle des transistors d'entrée sur le circuit extérieur d'autre part.

La tension de décalage représente la différence de tension qu'il faudrait appliquer entre les deux entrées d'un AOP en boucle ouverte, lorsque on a relié une des entrées au zéro, pour avoir une tension de sortie nulle. Cette tension d'offset peut être représentée en série avec l'entrée non-inverseuse[28] ou inverseuse[29].

Modélisation d'un AOP comprenant les courants de polarisation et la tension de décalage

Ce défaut provient des imperfections technologiques de l'amplificateur opérationnel. Elles se traduisent par un déséquilibre en tension, lié par exemple aux dissymétries de VBE des transistors de l'étage différentiel d'entrée dans un AOP à transistors bipolaires. D'autres imperfections, comme les dissymétries de gain et de composants internes s'ajoutent aux causes de ce déséquilibre. En effet l'erreur en sortie peut s'écrire comme le produit du gain par la tension de décalage d'entrée, plus la tension de décalage de l'amplificateur de sortie. Suivant le montage de l'AOP et le gain désiré, l'erreur de l'étage d'entrée ou celle de l'étage de sortie sera prépondérante. Dans un amplificateur de mesure, le gain peut être important, rendant prépondérant l'erreur due à l'étage d'entrée. Dans le cas de montages à faible gain, la tension de décalage de l'étage de sortie devra être prise en compte. Les amplificateurs de précision sont ajustés par laser pour limiter ce décalage. Certains amplificateurs proposent aussi d'annuler la tension de décalage par utilisation d'un potentiomètre externe.

Pour les AOP standard, la tension de décalage vaut entre 50 et 500 µV, mais elle fluctue entre 1 µV pour les amplificateurs de type chopper à 50 mV pour les moins bons AO CMOS[29]. Le plus souvent, les AOP de type bipolaire sont ceux qui offrent les tensions de décalage les plus faibles, surtout quand les transistors de l'étage différentiel d'entrée sont idéalement appariés[29]. La tension d'offset est dépendante de la température. Ceci est un critère important influant sur les performances des montages, surtout intégrateurs. Selon les modèles d'AOP elle fluctue de quelques dizaines de µV/°C pour les AOP classiques à 0, 1 µV/°C pour les AOP de précision[30]. L'influence du vieillissement sur la tension de décalage est aussi à prendre en considération dans le cas de montages de précision.


Les courants traversant chacune des entrées de l'AOP quand aucun signal ne lui est appliqué proviennent des courants de polarisation des transistors d'entrée. On définit un courant de polarisation qui est la moyenne entre les courants de polarisation traversant les deux entrées et un courant de décalage dit «courant d'offset» qui est la différence entre les courants de polarisation traversant les deux entrées. Le courant de polarisation peut fluctuer de 60 fA à plusieurs µA[31]. Le courant d'offset est lui aussi dépendant de la température. Il peut fluctuer de quelques dizaines de nA/°C à quelques pA/°C, ou alors des valeurs toujours inférieures.


Vitesse de balayage

Effet du slew-rate : en rouge la tension désirée, en vert la tension obtenue

La vitesse de balayage (ou slew rate) représente la vitesse de variation maximale de tension que peut produire un amplificateur. Quand la vitesse de variation du signal de sortie d'un amplificateur devrait être supérieure à sa vitesse de balayage, sa tension de sortie est une droite de pente SR.

 \mathrm{SR} = \max\left(\frac{dv_s(t)}{dt}\right) .

La vitesse de balayage est exprimée en V/µs.

Dans un AOP, le slew-rate dépend le plus souvent du courant maximum que peut apporter l'étage différentiel. L'étage différentiel apporte à l'étage d'augmentcation de tension un courant proportionnel à la différence de tension entre les deux entrées. Ce courant sert surtout à charger la capacité de compensation interne C présente dans l'étage d'augmentcation en tension. La relation courant/tension est alors celle d'un condensateur : i=C\frac{dV_c}{dt} Le courant maximum que peut apporter l'étage d'entrée étant égal à deux fois le courant de polarisation IC0 traversant le collecteur d'un des transistors d'entrée, le slew-rate peut s'obtenir de la façon suivante :

 \mathrm{SR} = \frac{2I_{C0}}{C}

Pour un µA741 on a IC0=10 µA et C=30 pF ce qui nous donne une vitesse de balayage de 0, 67 V/µS qui est en accord avec ce qui peut être mesuré[32]. Si l'AOP ne possède pas de capacité de compensation, le slew-rate est déterminé par les capacités parasites internes à l'AOP[33]. De tels AOP possèdent un slew-rate et une bande passante plus importante que les AOP compensés, mais ils ne sont pas stables lors d'une utilisation en suiveur[33].

Les AOP BiFET rapides compensés en fréquence série TL071 - TL081 et dérivés ont des slew-rate plus élevés, de l'ordre de 10 à 20 V/µs.

Caractéristiques

Voici un tableau donnant les caractéristiques de quelques AOP :

Propriété Ordre de
grandeur
Bipolaire
(LM741) [34], [35], [36]
BiFET
(TL081) [37], [38]
Bimos
(CA3140) [39]
Cmos
(LMC6035) [40]
Augmentcation Adiff=Vs/ (V+-V-) > 105 [19] 2*105 2*105 105 106
Gain Gdiff=20. log (Adiff) > 100 [19] 106 106 100 106
Impédance d'entrée Re (Ω) > 105 [22] 2*106 1012 1, 5*1012 > 1013
Impédance de sortie Rs (Ω) < 200 75 100 60
Fréquence de coupure f1 10 Hz[41] ∼20 Hz
Courants de fuite I+, I- < 500 nA 80 nA 30 pA 10 pA 0, 02 pA
Tension d'offset Voff (mV) < 10 1 3 8 0, 5
TRMC Gdiff/Gmc (dB) > 70[19] 90 86 90 96
Tension de bruit (nV/\sqrt{Hz}) [42] 18 40 27

Compensation de l'offset d'entrée

Courant de polarisation

Réduction de l'offset due aux courants de polarisation.

Les courants de polarisation (notés Ie- et Ie+ sur la figure ci-contre) créent une chute de tension aux limites des composants du circuit, créant ainsi une tension d'offset. Il est envisageable de diminuer cette tension d'offset en insérant entre le zéro et l'entrée non-inverseuse une résistance R3 de même valeur que la résistance équivalente du circuit vue de l'entrée inverseuse. De cette façon, on crée une chute de tension équivalente entre les deux entrées de l'AOP.

Tension d'offset

La tension d'offset est directement augmentée par le montage. Ainsi, un AOP ayant un offset de 10 mV qui est utilisé dans un montage ayant un gain en tension de 100, possédera un offset de 1 V en sortie. Sur les AOP possédant un réglage de zéro, on peut annuler cet offset en reliant un potentiomètre aux broches appropriées. Si l'AOP n'est pas pourvu de broches de réglage du zéro (cas des boîtiers intégrant plusieurs AOP, surtout), il faut alors passer par un montage externe afin d'annuler cet offset. Cette façon de faire permet aussi de s'affranchir des différences de mode de réglage de l'offset prévues par les constructeurs selon les types d'AOP, et par conséquent de perfectionner l'interchangeabilité.

Quelle que soit la méthode de compensation d'offset choisie, celui d'un AOP fluctue avec sa température et certaines méthodes peuvent augmenter cette variation[43], ou alors l'annuler[44].

Compensation fréquentielle

Influence de la compensation interne sur les performances en boucle ouverte d'un AOP.

Chaque étage d'un amplificateur possède une résistance de sortie et une capacité en entrée. Ainsi, chaque étage d'un amplificateur se comporte comme un filtre passe-bas du premier ordre pour son prédécesseur. C'est ce qui explique les variations de gain et de phase selon la fréquence dans un AOP. Les AOP étant le plus souvent composés d'au moins trois étages d'augmentcation[45], ils se comportent en boucle ouverte comme un filtre passe-bas du troisième ordre. Or, dans un AOP le gain continu est tel que l'amplificateur possède toujours un gain en boucle ouverte supérieur à 1 quand le déphasage vaut 180°, ce qui peut poser des problèmes de stabilité lors d'une utilisation en boucle fermée.

Pour que l'amplificateur soit stable même lors d'une utilisation en suiveur, les performances de la majorité des AOP sont dégradées par l'ajout d'un condensateur au sein de l'AOP afin d'assurer une marge de phase suffisante lors d'une utilisation en suiveur. De tels amplificateurs sont inconditionnellement stables, mais leurs performances ne sont pas nécessairement suffisantes pour l'ensemble des applications.

Pour les applications nécessitant un produit gain-bande plus important, il existe des AOP non-compensés ou sous-compensés qui offrent de meilleures performances mais dans ce cas, c'est au concepteur du circuit d'effectuer ou non une compensation externe pour que l'amplificateur soit stable pour son application.

Contre-réaction

Article détaillé : Contre réaction.

La contre-réaction soustrait au signal d'entrée une image réduite du signal de sortie avant de l'augmenter. Son principal effet est de diminuer le gain du dispositif. Cependant, les distorsions dues à l'amplificateur sont elles aussi soustraites au signal d'entrée. De cette façon, l'amplificateur augmente une image réduite et inversée des distorsions, ce qui permet d'en diminuer le taux, de linéariser la courbe de réponse tension / fréquence, et d'augmenter la bande passante. La contre-réaction permet aussi de compenser les dérives thermiques ou la non-linéarité des composants. La contre-réaction est aussi utilisée pour définir exactement le gain mais aussi la bande passante et de nombreux autres paramètres d'un montage amplificateur.

Il existe deux types de contre-réactions : la contre-réaction en tension et la contre-réaction en courant. Les amplificateurs utilisant une contre-réaction en courant sont aussi nommés «amplificateur transimpédance», mais ce terme est aussi utilisé pour les convertisseurs courant / tension qui peuvent utiliser des amplificateurs à contre-réaction en courant ou des amplificateurs à contre-réaction en tension.

Le premier brevet concernant les amplificateurs à contre-réaction en courant a été déposé en 1983 par David Nelson et Kenneth Saller[46]. Avant cette date, l'ensemble des amplificateurs utilisaient une contre-réaction en tension. L'utilisation d'une contre-réaction en courant sert à réaliser des AOP plus rapides et générant moins de distorsions. Le principal défaut des amplificateurs à contre-réaction en courant est qu'ils possèdent une tension d'offset plus importante que leurs homologues à contre-réaction en tension. Ce défaut les rend moins adaptés à la fabrication d'amplificateurs à fort gain ou d'amplificateurs d'instrumentation.

Les AOP utilisant une contre-réaction en courant sont tous des amplificateurs bipolaires. De par leur conception, ils possèdent une forte impédance d'entrée pour l'entrée non-inverseuse et une faible impédance pour l'entrée inverseuse (celle utilisée essentiellement comme entrée du signal dans les montages amplificateurs). Pour les amplis à contre-réaction en courant, le gain en boucle ouverte se mesure en ohms et non plus en V/V comme pour les AOP standard. De la faible impédance de l'entrée non-inverseuse découle aussi une grande immunité vis-à-vis des bruits parasites dans les montages amplificateurs.

Fonctionnement interne

Schéma simplifié d'un AOP

Les AOP sont le plus souvent constitués d'au moins trois étages : un étage différentiel (en jaune sur la figure), un ou plusieurs étages d'augmentcation de la tension (en orange) et un buffer de tension (en bleu) [45]. L'étage différentiel d'entrée est le plus souvent constitué d'une paire différentielle. Il apporte l'augmentcation différentielle entre les deux entrées mais aussi la haute impédance d'entrée. L'étage différentiel peut comporter un dispositif de compensation des courants de polarisation. Dans ce cas, la base de chaque transistor d'entrée est reliée au collecteur d'un transistor qui apporte alors le courant indispensable à la polarisation de la paire différentielle d'entrée. L'étage d'augmentcation est le plus souvent un amplificateur de fort gain et de classe A. La capacité présente dans l'étage d'augmentcation de tension permet d'effectuer la compensation fréquentielle. Le buffer de tension qui sert d'étage de sortie, possède un gain en tension d'un. Il autorise l'amplificateur d'apporter des courants importants en sortie avec une faible impédance de sortie. Il inclut aussi les limitations de courant mais aussi les protections contre les courts-circuits.

Exemple de schéma interne : le 741

Schéma interne d'un 741[34], [47], [48]

En bleu l'étage différentiel d'entrée, en rouge les miroirs de courant, en cyan l'étage de sortie, en magenta l'étage d'augmentcation en tension et en vert le système de polarisation de l'étage de sortie.

Les sources de courant

Les trois sections du schéma cerclées de rouge sont des miroirs de courant. Un miroir de courant est un montage électronique constitué de deux transistors. Le terme de miroir de courant provient du fait que chacun de ces deux transistors est parcouru par le même courant quelle que soit la tension à ses limites.

Le miroir de courant constitué par Q10 et Q11 est un «miroir de courant de Widlar». La présence de la résistance de 5 kΩ sert à diminuer le courant traversant Q10 comparé à celui traversant Q11.

Les miroirs de courant constitués par Q8-Q9 et Q12-Q13 permettent aux transistors Q8 et Q13 d'être parcourus par un courant seulement lié à celui traversant la résistance de 39 kΩ et cela quelle que soit la tension à leurs limites. Le courant traversant la résistance de 39 kΩ dépendant seulement de la tension d'alimentation de l'AOP, les transistors Q8 et Q13 se comportent par conséquent comme des sources de courant vis-à-vis de la partie du montage à laquelle ils sont rattachés.

L'étage différentiel

L'étage d'augmentcation de cet amplificateur est entouré de bleu sur la figure ci-contre. Les transistors Q1 à Q4 forment l'amplificateur différentiel d'entrée. L'entrée non-inverseuse se fait sur la base du transistor Q1 alors que l'entrée inverseuse se fait sur la base du transistor Q2.

Le courant apporté par le transistor Q8 étant indépendant de la tension à ses limites, il agit comme une source de courant pour la paire différentielle constituée par les transistors Q1 et Q2. L'utilisation d'une source de courant comme charge à une paire différentielle, permet de perfectionner le taux de réjection du mode commun du montage.

Les transistors Q5 et Q6 forment un miroir de courant. L'utilisation d'un miroir de courant sert à s'assurer que les deux branches de l'amplificateur différentiel sont parcourues par le même courant de polarisation. Le transistor Q7 permet d'augmenter les performances du miroir de courant en diminuant le courant prélevé à Q3 pour alimenter les bases des transistors Q5 et Q6.

L'étage d'augmentcation en tension

L'étage d'augmentcation de cet amplificateur est entouré de magenta sur la figure ci-dessus. Il est constitué des transistors Q15 et Q19 montés en configuration «darlington». Cet amplificateur fonctionne en classe A afin d'augmenter avec le moins de distorsion envisageable le signal provenant de l'étage différentiel. La capacité de 30 pF permet d'effectuer une contre-réaction locale aux limites de l'étage d'augmentcation en tension et ainsi d'assurer la compensation fréquentielle de l'AOP.

L'étage de sortie

L'étage de puissance de sortie est entouré de cyan sur la figure ci-dessus. Il est constitué d'un push-pull de classe AB (Q14 et Q20). La polarisation du push-pull est assurée par le multiplicateur de VBE entouré de vert sur la figure.

La résistance de 25 Ω sert de sonde de courant pour le courant de sortie traversant le transistor Q14. La tension aux limites de cette résistance commande directement le transistor Q17. Ainsi, la tension aux limites de la résistance de 25 Ω se trouve limitée à la tension base-émetteur «de seuil» du transistor (environ 0, 6 V à 20 °C). Une fois cette tension atteinte, le transistor Q17 entre en conduction, limitant ainsi le courant de base du transistor Q14 et par conséquent, le courant de sortie. Pour une tension base-émetteur maximum de 0, 6 V on obtient une limitation du courant de sortie à 25 mA. La limitation du courant traversant Q20 reprend le même principe que celle du transistor Q14. Elle se fait par l'intermédiaire de la tension base-émetteur du transistor Q14, de la tension émetteur-collecteur du transistor Q16 et de la résistance de 50 Ω.

Les résistances de 25 Ω et 50 Ω reliées à l'émetteur des transistors Q14 et Q20 permettent aussi d'éviter leur emballement thermique. En effet, plus la température d'un transistor bipolaire augmente, plus son gain en courant β augmente. Cette augmentation de β se traduit par une augmentation du courant traversant le transistor et par conséquent une augmentation de la température du composant, qui va à son tour augmenter le courant traversant le transistor et ainsi de suite jusqu'à la défaillance de ce dernier. Le montage décrit ci-dessus permet dans une large mesure d'éviter cela. Dans la zone de fonctionnement ou, par exemple pour Q14, Q17 entre en conduction, l'étage final se comporte comme un générateur de courant constant (25 mA dans l'exemple), limitant la puissance dissipée du transistor de sortie. Il en est de même pour Q20.

Applications

L'AOP est un composant particulièrement présent dans les montages analogiques :

Notes et références

  1. cette abréviation sera souvent utilisée dans l'article
  2. pour Amplificateur Linéaire Intégré
  3. pour Amplificateur Intégré Linéaire
  4. (en) Analog Devices application note 106 : A Collection of Amp Applications (PDF)
  5. (en) National semiconductors AN-20 : An Applications Guide for Op Amps, page 5-15
  6. (en) National semiconductors AN-30 : Log Converters
  7. (en) Texas Instruments Handbook of operational augmenter applications, page 87-81 : «Additional Circuits»
  8. «As an augmenter so connected can perform the mathematical operations of arithmetic and calculus on the voltages applied to it's input, it is hereafter termed an «Operational Augmenter»», Analysis of problems in dynamics by electronic circuits, Proceedings of the IRE, vol. 35, p. 444, mai 1947
  9. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , «Op Amp History --Vacuum tubes Op Amps», p.  779 : «Naming the Op Amp»
  10. GAP/R est l'acronyme de George A. Philbrick Researches du nom du créateur de la sociéte : George A. Philbrick
  11. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , «Op Amp History --Vacuum tubes Op Amps», p.  783-783 : George Philbrick and GAP/R
  12. À titre informatif : la datasheet du K2-W sur le site de national
  13. (en) Ron Mancini, Op Amps for Everyone, second edition, page : 1-3.
  14. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , «Op Amp History --IC Op Amps», p.  808-909 : «The µA741»
  15. Tales of the Continuum : A Subsampled History of Analog Circuits, Thomas H. Lee, octobre 2007.
  16. Patrick Aldebert, Techniques de l'ingénieur dossier E320 : «Amplificateurs faibles niveaux». Paragraphe : «Pour en savoir plus», 02-2002
  17. Electrical Engineering Glossary Definition for Vcc sur le site de maxim
  18. (en) Ron Mancini, Op Amps for Everyone, Newnes, 2003 (ISBN 0750677015 et ISBN 978-0750677011) , «3.1 Ideal Op Amp Assumptions»
  19. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , «1-1 : introduction», p.  6 : «Ideal Op Amp Attributes»
  20. (en) John Irvine Smith, Modern Operational Circuit Design, Wiley, 1972 (ISBN 0471801941 et ISBN 978-0471801948) , «Chap I : The Unity-Gain Invertor»
  21. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , «Op Amp Basics -- Op Amps Specifications», p.  68-70 : «Frequency Responce -- Voltage Feedback Op Amp, Gain-Bandwidth Product»
  22. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , p.  59 : «Input Impedance»
  23. (en) Jerald G. Græme, Applications of Operational Augmenters : Third Generation Techniques (The BB electronics series) , Mcgraw-Hill, 1973 (ISBN 0070238901 et ISBN 978-0070238909) , p.  35-36 : «Increasing Input Impedance»
  24. (en) David F. Stout, Milton Kaufman, Handbook of Operational Augmenter Circuit Design, Mcgraw-Hill, 1976 (ISBN 007061797X et ISBN 978-0070617971) , p.  2-12 : «Input resistance»
  25. Parfaitement, cette résistance est nulle.
  26. (en) Ron Mancini, Op Amps for Everyone, Newnes, 2003 (ISBN 0750677015 et ISBN 978-0750677011) , p.  160 : «Output Impedance»
  27. J. F. Gazin, Manuel d'application CIL, Tome 1, Les amplificateurs opérationnels, Thomson-Sescosem, p. 27.
  28. (en) Ron Mancini, Op Amps for Everyone, Newnes, 2003 (ISBN 0750677015 et ISBN 978-0750677011) , «11.3.1 Input offset voltage»
  29. (en) Ron Mancini, Op Amps for Everyone, Newnes, 2003 (ISBN 0750677015 et ISBN 978-0750677011) , p.  51 : «Input Offset Voltage Vos»
  30. OP177 Datasheet, Analog Devices[pdf]]
  31. (en) Walt Jung, Op Amp Applications Handbook, Newnes, 2004 (ISBN 0750678445 et ISBN 978-0750678445) , «Op Amp Basics --Op Amps Specifications», p.  55-57 : «Input Bias Current, Ib»
  32. (en) [pdf] National semiconductors application note A : The Monolithic Operational Augmenter : A Tutorial Study
  33. (en) Ron Mancini, Op Amps for Everyone, Newnes, 2003 (ISBN 0750677015 et ISBN 978-0750677011) , p.  162 : «Slew Rate at Unity Gain»
  34. LM741 Operational Augmenter Datasheet (national)
  35. LM741 Operational Augmenter Datasheet (intersil)
  36. µA741 General-purpose Operational Augmenter Datasheet (Texas)
  37. Le terme BiFET sert à désigner un AOP utilisant des transistors JFET en entrée et des transistors bipolaires ailleurs
  38. TL081 Datasheet (national)
  39. CA3140 Datasheet
  40. LMC6035 Datasheet (national)
  41. Pour un AOP compensé
  42. à 1kHz
  43. (en) Jerald G. Græme, Applications of Operational Augmenters : Third Generation Techniques (The BB electronics series) , Mcgraw-Hill, 1973 (ISBN 0070238901 et ISBN 978-0070238909) , p.  3-6 : «Drift effect of offset voltage nulling»
  44. (en) Jerald G. Græme, Applications of Operational Augmenters : Third Generation Techniques (The BB electronics series) , Mcgraw-Hill, 1973 (ISBN 0070238901 et ISBN 978-0070238909) , p.  6-12 : «Null technique with no drift effect»
  45. (en) Albert Paul Malvino, David J. Bates, Electronic principles, McGraw-Hill Science, 2006 (ISBN 0073222771 et ISBN 0071108467) , «18-1 : Introduction to Op Amps»
  46. (en) Brevet U. S. 4502020
  47. Manuel d'applications C. I. L., Tome 1, «Les amplificateurs opérationnels», éd. Thomson-CSF-Sescosem, J. F. Gazin, 1971, p. 120
  48. Michel girard, Amplificateurs Opérationnels, vol.  1 : Présentation, Parfaitisation, Méthode d'étude, McGraw-Hill, 1989 (ISBN 2704211949) , p.  89-91 : L'amplificateur opérationnel 741

Bibliographie

Ouvrage utilisé pour la rédaction de l'article : source utilisée pour la rédaction de cet article

En français

En anglais

Annexes

Liens externes


Goldenwiki 2.png

Recherche sur Amazon (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Amplificateur_op%C3%A9rationnel.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 07/04/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu